Correction de l'examen du 12 janvier 2012

Exercice 1. (Questions de cours)

1. Soit $f: \mathbb{R}^n \to \mathbb{R}^n$ une application différentiable. La matrice jacobienne de f au point $x \in \mathbb{R}^n$ est définie par

$$J(f)(x) := \left(\frac{\partial f_i}{\partial x_j}(x)\right)_{1 \le i,j \le n}$$

si $f = (f_1, \dots, f_n)$, avec pour tout $j \in \{1, \dots, n\}$, $f_j : \mathbb{R}^n \to \mathbb{R}$ la j-ème fonction coordonnée de f.

2. Soit $f:\mathbb{R}^n\to\mathbb{R}$ une application de classe C^2 et $x\in\mathbb{R}^n$. La différentielle seconde de f au point x vérifie

$$\forall h = \begin{pmatrix} h_1 \\ \vdots \\ h_n \end{pmatrix} \in \mathbb{R}^n, \quad d^2 f_x(h, h) = \sum_{i,j=1}^n \frac{\partial^2 f_j}{\partial x_i \partial x_j}(x) h_i h_j = {}^t h H(f)(x) h$$

avec $H(f)(x) := \left(\frac{\partial^2 f}{\partial x_i \partial x_j}(x)\right)_{1 \leq i,j \leq n}$ la matrice hessienne de f au point x.

3. Soit $f: \mathbb{R}^n \to \mathbb{R}$ une application différentiable et $x_0 \in \mathbb{R}^n$. Si x_0 est un extremum local de f sur \mathbb{R}^n , alors $df_{x_0} = 0_{\mathcal{L}(\mathbb{R}^n,\mathbb{R})}$ (ce qui est équivalent à $\nabla f(x_0) = 0_{\mathbb{R}^n}$).

4. Soit $f: \mathbb{R}^n \to \mathbb{R}$ une application de classe C^1 et x_0 un point critique de f. Si f est convexe sur \mathbb{R}^n , alors x_0 est un point de minimum global de f sur \mathbb{R}^n .

REMARQUE. La question 4. demandait une condition suffisante d'**ordre** 1 pour l'existence d'un minimum **global** : il aurait été faux de considérer la matrice hessienne et son caractère défini positif pour pour répondre à cette question car f n'est pas supposée de classe C^2 sur \mathbb{R}^n et dans le cas où elle le serait, si $H(f)(x_0)$ était définie positive, alors x_0 serait un point de minimum local de f sur \mathbb{R}^n .

Exercice 2. 1. L'application linéaire A est alors donnée par

$$\forall x = (x_1, x_2) \in \mathbb{R}^2, \quad A(x) = (x_1, 5x_1 + x_2).$$

Soit $y = (y_1, y_2) \in \mathbb{R}^2$ et $x = (x_1, x_2) \in \mathbb{R}^2$. On obtient les équivalences suivantes :

$$A(x) = y \quad \Leftrightarrow \quad \left\{ \begin{array}{ccc} x_1 & = y_1 \\ 5x_1 & + x_2 & = y_2 \end{array} \right. \quad \Leftrightarrow \quad (x_1, x_2) = (y_1, y_2 - 5y_1).$$

Par conséquent, A est inversible et A^{-1} est donnée par

$$\forall y = (y_1, y_2) \in \mathbb{R}^2, \quad A^{-1}(y) = (y_1, y_2 - 5y_1).$$

2. (a) Soit $y = (y_1, y_2) \in \mathbb{R}^2$. Par définition, $||A^{-1}(y)||_{\infty} = \max(|y_1|, |y_2 - 5y_1|)$. Or, par inégalité triangulaire, $|y_2 - 5y_1| \le |y_2| + 5|y_1| \le 6||y||_{\infty}$ et puisque $|y_1| \le 6||y||_{\infty}$, on trouve $||A^{-1}(y)||_{\infty} \le 6||y||_{\infty}$. Ainsi, on a prouvé l'inégalité $||A^{-1}|| \le 6$.

(b) Pour y=(1,-1), on a $\|y\|_{\infty}=1$ et $A^{-1}(y)=(1,-6)$ d'où $\|A^{-1}(y)\|_{\infty}=6$. Par conséquent, $\|A^{-1}\|=6$.

3. Soit $\varphi: \mathbb{R}^2 \to \mathbb{R}^2$ l'application définie par

$$\forall x = (x_1, x_2) \in \mathbb{R}^2, \quad \varphi(x) = \left(\frac{x_1}{8}, \frac{\cos^2 x_2}{7}\right).$$

(a) On pose pour tout $x = (x_1, x_2) \in \mathbb{R}^2$, $\varphi_1(x) := \frac{x_1}{8}$ et $\varphi_2(x) := \frac{\cos^2 x_2}{7}$. Puisque φ_1 est polynomiale, alors φ_1 est de classe C^1 de \mathbb{R}^2 vers \mathbb{R} et φ_2 est la composée des applications $x \mapsto x_2$ et $t \mapsto \frac{\cos^2 t}{7}$ qui sont de classe C^1 respectivement de \mathbb{R}^2 vers \mathbb{R} et de \mathbb{R} vers \mathbb{R} donc par composition, φ_2 est de classe C^1 de \mathbb{R}^2 vers \mathbb{R} . Or, $\varphi = (\varphi_1, \varphi_2)$ donc φ est de classe C^1 de \mathbb{R}^2 vers \mathbb{R}^2 . (b) Soit $x \in \mathbb{R}^2$. Un calcul de dérivées partielles de φ au point x nous permet d'avoir que

$$J(\varphi)(x) = \begin{pmatrix} \frac{1}{8} & 0 \\ 0 & -\frac{2\sin x_2 \cos x_2}{7} \end{pmatrix} = \begin{pmatrix} \frac{1}{8} & 0 \\ 0 & -\frac{\sin(2x_2)}{7} \end{pmatrix}.$$

On en déduit alors la différentielle de φ au point x:

$$\forall h = (h_1, h_2) \in \mathbb{R}^2, \quad d\varphi_x(h) = \left(\frac{h_1}{8}, \frac{-\sin(2x_2)}{7}h_2\right).$$

Fixons $h = (h_1, h_2) \in \mathbb{R}^2$. Alors $||d\varphi_x(h)||_{\infty} = \max\left(\frac{|h_1|}{8}, \frac{|\sin(2x_2)|}{7}|h_2|\right)$.

Or, $\frac{|\sin(2x_2)|}{7}|h_2| \leq \frac{|h_2|}{7}$ car $|\sin(2x_2)| \leq 1$ d'où $\frac{|\sin(2x_2)|}{7}|h_2| \leq \frac{1}{7}\|h\|_{\infty}$, et (puisque $\frac{1}{8} \leq \frac{1}{7}!$), on a $\frac{|h_1|}{8} \leq \frac{1}{7}\|h\|_{\infty}$ et finalement, on obtient $\|d\varphi_x(h)\|_{\infty} \leq \frac{1}{7}\|h\|_{\infty}$. Par conséquent, on trouve l'inégalité

$$||d\varphi_x|| \le \frac{1}{7}.$$

4. Soit x et y deux éléments de \mathbb{R}^2 . Puisque φ est de classe C^1 sur l'ouvert convexe \mathbb{R}^2 , l'inégalité des accroissements finis donne

$$\|\varphi(x) - \varphi(y)\|_{\infty} \le \sup_{u \in [x,y]} \|d\varphi_u\| \|x - y\|_{\infty}.$$

Or, d'après 3., on obtient

$$\sup_{u \in [x,y]} \|d\varphi_u\| \le \frac{1}{7}$$

d'où

$$\|\varphi(x) - \varphi(y)\|_{\infty} \le \frac{1}{7} \|x - y\|_{\infty}.$$

Ainsi, φ est lipschitzienne de \mathbb{R}^2 vers \mathbb{R}^2 et $\operatorname{Lip}(\varphi) \leq \frac{1}{7}$.

5. On applique le théorème d'inversion globale : d'après 1., A est une application linéaire inversible de \mathbb{R}^2 vers \mathbb{R}^2 et d'après 3. et 4., φ est une application de classe C^1 et lipschitzienne de \mathbb{R}^2 vers \mathbb{R}^2 avec

$$\operatorname{Lip}(\varphi) \le \frac{1}{7} < \frac{1}{6} = \frac{1}{\|A^{-1}\|}.$$

Le théorème d'inversion globale nous assure que $A + \varphi$ est un C^1 difféomorphisme de \mathbb{R}^2 vers \mathbb{R}^2 .

Exercice 3. Soit \mathcal{E} le sous-ensemble de \mathbb{R}^3 donné par $\mathcal{E} = \{x \in \mathbb{R}^3, \ 2x_1^2 + 4x_2^2 + 3x_3^2 = 10\}$ et on considère la fonction $f: \mathbb{R}^3 \to \mathbb{R}$ définie par

$$\forall x = (x_1, x_2, x_3) \in \mathbb{R}^3, \quad f(x) = x_1^2 + x_2^2 + x_3^2.$$

Posons $g(x) = 2x_1^2 + 4x_2^2 + 3x_3^2 - 10$ pour tout $x = (x_1, x_2, x_3) \in \mathbb{R}^3$.

- 1. Montrons que \mathcal{E} est un fermé de \mathbb{R}^3 . En effet, \mathcal{E} est l'image réciproque du fermé $\{0\}$ de \mathbb{R} par l'application continue $g: \mathbb{R}^3 \to \mathbb{R}$ (car polynomiale).
 - Montrons que \mathcal{E} est borné dans \mathbb{R}^3 . Puisque \mathbb{R}^3 est de dimension finie, les normes sur \mathbb{R}^3 sont équivalentes et le caractère borné est donc indépendant du choix de la norme. Il suffit alors de prouver que $\mathcal E$ est borné pour la norme euclidienne $\|\cdot\|_2$. En effet, si $x \in \mathcal{E}$, on a $\|x\|_2^2 = x_1^2 + x_2^2 + x_3^2 \le 2x_1^2 + 4x_2^2 + 3x_3^2 = 10$ d'où $||x||_2 \leq \sqrt{10}$.
- 2. L'espace \mathbb{R}^3 étant de dimension finie, \mathcal{E} est un compact de \mathbb{R}^3 car d'après 1. c'est un fermé borné de \mathbb{R}^3 . De plus, l'application f est polynomiale donc continue sur \mathbb{R}^3 , et a fortiori sur le compact \mathcal{E} donc f est bornée et atteint ses bornes sur \mathcal{E} . En particulier, f admet un maximum global sur \mathcal{E} .
- 3. Soit x un point de maximum global de f sur \mathcal{E} . On veut appliquer le théorème sur les multiplicateurs de Lagrange : l'application g étant polynomiale, on a que g est de classe C^1 sur \mathbb{R}^3 et on peut écrire

$$\mathcal{E} = \{x \in \mathbb{R}^3, \ g(x) = 0\}$$
. De plus, on constate que $\nabla g(x) \neq 0_{\mathbb{R}^3}$ car $\nabla g(x) = \begin{pmatrix} 4x_1 \\ 8x_2 \\ 6x_3 \end{pmatrix}$ ne s'annule qu'en

(0,0,0) qui n'appartient pas à \mathcal{E} .

On observe que f est de classe C^1 sur \mathbb{R}^3 (car polynomiale) donc on peut désormais appliquer le théorème sur les multiplicateurs de Lagrange : il existe un unique $\lambda \in \mathbb{R}$ tel que $\nabla f(x) + \lambda \nabla g(x) = 0_{\mathbb{R}^3}$, ce qui est équivalent à

$$\begin{cases} 2x_1 + 4\lambda x_1 = 0 \\ 2x_2 + 8\lambda x_2 = 0 \\ 2x_3 + 6\lambda x_3 = 0 \end{cases} \Leftrightarrow \begin{cases} (1+2\lambda)x_1 = 0 & (1) \\ (1+4\lambda)x_2 = 0 & (2) \\ (1+3\lambda)x_3 = 0 & (3) \end{cases}$$

On distingue alors plusieurs cas.

- (a) Cas 1: $\lambda = -\frac{1}{2}$. Les équations (2) et (3) donnent alors $x_2 = x_3 = 0$ donc $x = (x_1, 0, 0)$.
- (b) Cas 2: $\lambda = -\frac{1}{4}$. Les équations (1) et (3) deviennent $x_1 = x_3 = 0$, soit $x = (0, x_2, 0)$.
- (c) Cas 3: $\lambda = -\frac{1}{3}$. Les équations (1) et (2) fournissent $x_1 = x_2 = 0$, d'où $x = (0, 0, x_3)$.
- (d) Cas $4: \lambda \neq -\frac{1}{2}, \frac{1}{3}, \frac{1}{4}$. Les équations (1), (2) et (3) donnent alors $x_1 = x_2 = x_3 = 0$ mais (0,0,0) n'appartient pas à \mathcal{E} .

Par conséquent, on en déduit que si x est un point de maximum global de f sur \mathcal{E} , x est sous la forme annoncée.

- 4. Soit x un point de maximum global de f sur \mathcal{E} . On utilise alors la question 2.
 - (a) Si $x = (x_1, 0, 0) \in \mathcal{E}$, on trouve $x_1 = \pm \sqrt{5}$ et f(x) = 5.
 - (b) Si $x = (0, x_2, 0) \in \mathcal{E}$, on a $x_2 = \pm \sqrt{\frac{5}{2}}$ et $f(x) = \frac{5}{2}$.
 - (c) Si $x = (0, 0, x_3) \in \mathcal{E}$, on obtient $x_3 = \pm \sqrt{\frac{10}{3}}$ et $f(x) = \frac{10}{3}$.

En comparant ces résultats, on trouve que $(\pm\sqrt{5},0,0)$ sont les points de maximum global de f sur \mathcal{E} et

$$\max_{\mathcal{E}} f = f(\pm \sqrt{5}, 0, 0) = 5.$$

5. Montrons que $\mathcal{F} := \{x \in \mathbb{R}^3, \ 2x_1^2 + 4x_2^2 + 3x_3^2 \le 10\}$ est un compact de \mathbb{R}^3 .

Puisque \mathbb{R}^3 est de dimension finie, il suffit de prouver que \mathcal{F} est un fermé borné de \mathbb{R}^3 . En gardant les mêmes notations que ce qui précède, on trouve que \mathcal{F} est l'image réciproque du fermé $]-\infty,0]$ de \mathbb{R} par l'application g qui est continue de \mathbb{R}^3 vers \mathbb{R} donc \mathcal{F} est un fermé de \mathbb{R}^3 . De plus, si $x \in \mathcal{F}$, on a $\|x\|_2^2 = x_1^2 + x_2^2 + x_3^2 \le 2x_1^2 + 4x_2^2 + 3x_3^2 \le 10$ d'où $\|x\|_2 \le \sqrt{10}$. L'application f étant continue sur \mathbb{R}^3 , f est également continue sur le compact \mathcal{F} de \mathbb{R}^3 donc f admet un

maximum global sur \mathcal{F} .

6. On constate que l'intérieur de \mathcal{F} est égal à

$$Int(\mathcal{F}) = \{ x \in \mathbb{R}^3, \ 2x_1^2 + 4x_2^2 + 3x_3^2 < 10 \}$$

alors que la frontière de \mathcal{F} est égale à \mathcal{E} , et on peut écrire $\mathcal{F} = \operatorname{Int}(\mathcal{F}) \cup \mathcal{E}$. L'étude de f sur \mathcal{E} étant l'objet des questions précédentes, on se ramène alors à étudier les extrema de f sur l'ouvert $Int(\mathcal{F})$.

- (a) On sait que pour qu'un point soit un extremum local d'une application différentiable sur un ouvert, il faut que ce soit un point critique de celle-ci. Puisque f est de classe C^1 sur $Int(\mathcal{F})$, on peut étudier les points critiques de f sur l'ouvert $Int(\mathcal{F})$. Un calcul de dérivées partielles montre que (0,0,0) est le seul point critique de f sur $Int(\mathcal{F})$.
- (b) Nature de (0,0,0): on constate que pour tout $x \in \text{Int}(\mathcal{F})$, on a $f(x) \geq 0 = f(0,0,0)$ donc (0,0,0) est un minimum global de f sur $Int(\mathcal{F})$ mais $(1,0,0) \in Int(\mathcal{F})$ et f(1,0,0) = 1 > f(0,0,0) donc (0,0,0)ne peut être un maximum global de f sur $Int(\mathcal{F})$.

Par conséquent, le maximum global de f sur \mathcal{F} est atteint sur \mathcal{E} et d'après 4., $(\pm\sqrt{5},0,0)$ sont les points de maximum global sur \mathcal{F} et

$$\max_{\mathbf{T}} f = f(\pm \sqrt{5}, 0, 0) = 5.$$

Exercice 4. Soit K un compact convexe d'un espace vectoriel normé E et $f: K \to K$ une application telle que pour tout $(x,y) \in K \times K$, $||f(x) - f(y)|| \le ||x - y||$. On fixe $a \in K$ et si $n \in \mathbb{N}^*$, on pose $f_n(x) = \frac{1}{n}a + \left(1 - \frac{1}{n}\right)f(x)$ pour tout $x \in K$.

- 1. Vérifions que pour tout $n \in \mathbb{N}^*$, f_n est bien définie de K vers K. Fixons $n \in \mathbb{N}^*$. Puisque f est une application de K vers K, alors si $x \in K$, $f(x) \in K$ et comme $a \in K$, $\frac{1}{n} \in [0,1],$ la convexité de K assure que $\frac{1}{n}a + \left(1 - \frac{1}{n}\right)f(x) \in K,$ d'où $f_n(x) \in K.$
- 2. Montrons que pour tout $n \in \mathbb{N}^*$, f_n est une application contractante sur K. Fixons $n \in \mathbb{N}^*$. Soit x et y deux éléments de K. On obtient

$$||f_n(x) - f_n(y)|| = \left\| \left(1 - \frac{1}{n} \right) f(x) - \left(1 - \frac{1}{n} \right) f(y) \right\| = \left(1 - \frac{1}{n} \right) ||f(x) - f(y)|| \le \left(1 - \frac{1}{n} \right) ||x - y||.$$

Or, $n \in \mathbb{N}^*$ donc $0 < \frac{1}{n} \le 1$ d'où $0 \le 1 - \frac{1}{n} < 1$. Par conséquent, l'inégalité ci-dessus permet alors d'affirmer que f_n est une application contractante de K.

- 3. Fixons $n \in \mathbb{N}^*$. L'ensemble K étant compact, K est un espace métrique complet pour la distance induite par la norme sur E et f_n étant une application contractante sur K, on peut appliquer le théorème du point fixe de Picard : il existe un unique $x_n \in K$ tel que $f_n(x_n) = x_n$.
- 4. Puisque (x_n) est une suite d'éléments de K qui est compact, le théorème de Bolzano-Weierstrass nous assure que la suite (x_n) admet une sous-suite convergente dans K, ce qui justifie l'existence d'une suite strictement croissante $\varphi: \mathbb{N}^* \to \mathbb{N}^*$ et de $x \in K$ tels que $x_{\varphi(n)} \to x$ lorsque n tend vers l'infini.
- 5. Montrons que $\lim_{n \to +\infty} f_{\varphi(n)}(x_{\varphi(n)}) = f(x)$. En effet, pour tout $p \in \mathbb{N}^*$, on a par inégalité triangulaire

$$||f(x) - f_p(x_p)|| \le ||f(x) - f(x_p)|| + ||f(x_p) - f_p(x_p)|| \le ||x - x_p|| + \frac{1}{n} ||f(x_p) - a||.$$

Si $n \in \mathbb{N}^*$, on prend $p = \varphi(n)$ dans l'inégalité ci-dessus et on trouve

$$||f(x) - f_{\varphi(n)}(x_{\varphi(n)})|| \le ||x - x_{\varphi(n)}|| + \frac{1}{\varphi(n)}||f(x_{\varphi(n)}) - a||.$$

Par continuité de f (car f est lipschitzienne), on a $\lim_{n \to +\infty} f(x_{\varphi(n)}) = f(x)$ et puisque $\lim_{n \to +\infty} \varphi(n) = +\infty$, on trouve $\lim_{n \to +\infty} \frac{1}{\varphi(n)} ||f(x_{\varphi(n)}) - a|| = 0.$

De plus, on sait que la suite $(x_{\varphi(n)})$ converge vers x dans K donc par théorème d'encadrement, on en déduit la limite voulue.

6. D'après 3., pour tout $n \in \mathbb{N}^*$,

$$f(x_{\varphi(n)}) = x_{\varphi(n)}.$$

Les questions 4. et 5. permettent de passer à la limite quand n tend vers l'infini, dans l'égalité ci-dessus, ce qui donne f(x) = x. Par conséquent, on vient de prouver que x est un point fixe de f dans K.